Sketch the graphs, shade the bounded region, set up the integral, and find the volume.

1.
$$y = x^2$$
, $x = 0$, $y = 0$, and $x = 2$ rotated about the x-axis

$$\pi \int_0^2 (\chi^2)^2 d\chi$$

2.
$$y = 1 + x^3$$
, $y = 0$, $x = 1$, and $x = 2$ rotated about the x-axis

$$\pi \int_{1}^{2} (1+x^{3})^{2} dx$$

3. $y = x^3$, y = 1, and x = 0 rotated about the y-axis

4. $y = \frac{1}{x}$, y = 2, and x = 2 about the y-axis

$$\prod_{1} \int_{\frac{1}{2}}^{2} (2)^{2} - \left(\frac{1}{1}\right)^{2} dy$$

5. y = x, $y = 2 - x^2$, and x = 0 rotated about the x-axis

$$\pi \int_{0}^{1} (2-x^{2})^{2} - (x)^{2} dx$$

6. $y = x^2$, and y = 2x rotated about the y-axis

$$\Pi \int_{0}^{4} (\sqrt{y})^{2} - \left(\frac{y}{2}\right)^{2} dy$$

7. $y = x^2$, and y = x + 2 rotated about the x-axis

$$\prod_{x=1}^{2} (x+2)^{2} - (x^{2})^{2} dx$$